Gaming for a Resilient Future: Net-Zero Energy Campus

presenting today

Roger Chang PE, LEED Fellow Moderator Principal, Engineering Leadership

Prem Sundharam AIA, LEED AP **Moderator** Principal, Global Sustainability Leader

overview of today

- 1 Background
- 2 Case Studies
- 3 The Game
- 4 Discussion
- 5 Conclusion

Net Zero Energy and Campuses

Why?

Mission Alignment American College and University President's Climate Commitment Long-Term Capital and Operations Planning

Opportunities Utility Providers Diverse Building Types Life-Cycle Mindset

Current requirements

- ✓ Green building certification
- ✓ Life-cycle cost analysis
- ✓ Benchmarking
- ✓ Climate action plan goal
- ✓ Other

Defining Net Zero Energy

Zero Energy Building (ZEB)

an energy-efficient <u>building</u> where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

Zero Energy Campus

an energy-efficient <u>campus</u> where, on a source energy basis, the actual annual delivered energy is less than or equal to the on-site renewable exported energy.

Zero Energy Portfolio

same as above, but with a portfolio instead of campus.

Zero Energy Community

same as above, but with a community instead of campus.

Defining Net Zero Carbon

from sources that are owned or controlled by a federal agency.

resulting from the generation of electricity, heat, or steam purchased by a federal agency.

from sources not owned or directly controlled by a federal agency but related to agency activities.

Not all metrics are created equal

Zero energy = Zero carbon = Zero cost Definitions are key: Boundary driven

boundaries

types of **energy**

- Non-renewable vs. Renewable
- Embodied Energy
- Water-Energy Nexus

campus energy

energy by end use

campus energy

• Benchmarking (ENERGY STAR) Median Site EUI: 130.7 kBTU/yr-gsf Median Source EUI: 262.6 kBTU/yr-gsf

• Variables

Campus Utility System Building Types Academic Calendar Building Stock Vintage Submetering

2030 challenge

U.S. Medians for Site Energy Use and 2030 Challenge Energy Reduction Targets by Space/Building Type ¹ From the Environmental Protection Agency (EPA): Use this chart to find the site fossil-fuel energy targets									
	Available in Target	Median	dian Average Median Site		2030 Challenge Site EUI Targets (kBtu/Sq.Ft./Yr)				
Building Use Description-	Finder ³	Source EUI* (kBtu/Sq.Ft./Yr)	Electric	EUI* (kBtu/Sq.Ft./Yr)	50% Target	60% Target	70% Target	80% Target	90% Target
Education		144	63%	58	29.0	23.2	17.4	11.6	5.8
K-12 School	x								
College / University (campus-level)		244	63%	104	52.0	41.6	31.2	20.8	10.4

www.architecture2030.org

design for **net zero**

net zero approach

integrated design matters

prototype data

case **study**

INTEGRATED ENERGY MASTER PLAN LONG BEACH COMMUNITY COLLEGE DISTRICT | JUNE 2018

CORDOBA CORPORATION SACRAMENTO • SAN FRANCISCO • CHATSWORTH LOS ANGELES • SANTA ANA • SAN DIEGO

LBCC IEMP

		District	LAC	PCC
88	No. of Buildings	48	30	18
SF	Gross SF of Buildings	1,581,982	1,293,419	288,563
පිරිප	Staff	1282	1105	177
88	Students	25,811	20,642	5161
-@-	Electricity (kwh)	14,597,844	11,018,909	3,578,935
\otimes	Natural Gas (therms)	369,315	307,085	62,230
\bigcirc	Water (gallons)	21,120,452	14,246,408	6,874,044
\$	Utility Costs	\$2,592,418	\$1,869,657	\$722,761
63	Vehicles	127	/	/

steps in energy master planning

Step 1: Vision

- Identify drivers and set goals with timelines
- Convert goals into measurable KPIs (Key Performance Indicators)

Step 2: Macro-scale Plan

- Implementable plan that identifies
 - Strategies to achieve set goals.
 - Projects that includes Strategies with acceptable ROI.
 - Timelines with funding opportunities.

Step 3: Micro-scale Initiatives

- Measurable and verifiable implementation projects
 - At campus level
 - At building level

scope and **schedule**

PLANNING PROCESS

DLR Group

key metrics + timelines

setting targets

 Historical Data O Projections

performance analysis – lenses

design recommendations

EEM 1A

- Measures taken in the past.
- Measure E and Prop 39 Projects

EEM 1B

 Measures currently pursuing to continue best practices in travel offsets, water efficiency and design standards.

EEM 2A

- Energy Use Reduction Strategies
- Implementing retro-commissioning and ASHRAE Level 1 & 2 recommendations including additional metering and reclaimed water conversion at LAC cooling tower.

EEM 2B

- Renewable Energy Production Strategies
- Solar system installations in phases.

EEM 2C

- Thermal Storage Strategies within buildings.
- Phase Change Material Technology implementation pilot at PCC followed by full implementation.

EEM 2D

- Clean energy use strategies for transportation.
- Install electric vehicle charging stations District wide.

EEM 3A

- Electric storage strategies at campus level.
- Install battery storage solutions.

EEM 3B

- Share and manage energy for resiliency
- Implement micro-grid solutions utilizing Siemens Controls.

EEM 4A

- Renewable Energy Production Strategies
- Install additional solar systems as needed to accommodate growth.

EEM 5-10

 Continue best practices periodic assessment of meeting targets every three years until 2050 and applying necessary best practices and technology to close the gap.

anticipated results

BEFORE: Energy Use Intensity Graph for LAC

AFTER: Energy Use Intensity Graph for LAC

general fund savings

the **game**

the game

Hypothetical Hi-ED campus

- Total built area: 2,000,000 SF
- Climate zone:

٠

- ASHRAE 4A
- Sustainability: LEED certified equivalent
- Energy performance:
- At least 5% better than code

three **activities**

- Step 1: demand profiles
 - when is energy used?
- Step 2: energy use / cost
 - how is energy used?
- Step 3: net-zero strategy
 - what do you do to achieve the goal?
 - (20 minutes)

step 1: demand profiles

• Load profile for a typical college building in California

24-hour period^a

© E Source; data from ITRON

Note: kW = kilowatt. a. 24-hour period = midnight to midnight.

step 1 : demand profiles

step 2: energy use/cost

- this exercise is to establish an energy budget per building type
- 100 blocks for electricity
- 100 blocks for gas
- 5 building type cards
- **goal**: how much source energy does each building consume in gas and electricity?
- total campus source energy use / site energy cost budget should equal to 100.

step 2 : energy **use/cost**

step 2 : energy use/cost

DLR Group

step 3: net-zero strategy

- this exercise is to apply appropriate strategies to achieve net-zero energy at a campus level
- 87 blocks for electricity
- 13 blocks for gas
- **goal**: eliminate 100 source energy use units via strategies that have the least capital cost with the most savings on operational costs
- total campus energy use blocks left should equal to 0.

step 3: net-zero strategy

- 16 independent strategy cards
- 2 strategies are cumulative
 - solar 15%, 30%, 45%
 - battery 15%, 30%, 45%
- with each card, you can eliminate certain number of source energy units
- you will have to gauge how much of that is electricity and gas
- an estimate on actual numbers provided based on our simulation

discussion

step 3 results: net-zero strategy

source energy units savings:	100 (E – 87, G – 13)		
energy cost units:	114		
capital cost units:	89		
strategies:			
 solar thermal lighting retro-commissioning low-cost HVAC medium-cost HVAC phase change materials plug-load control PV - 30% Cogen 			

- strategies eliminate both gas and electricity
- energy cost units are higher than 100 as synergies between strategies not taken into account

conclusion

