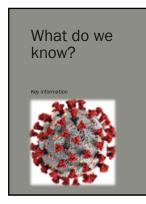


Learning Objectives


- Explain basics of SARS-CoV-2 virus and transmission pathways
- Describe Guidance Document produced by ASHRAE Epidemic Task Force (ETF) Schools Team for reopening schools and universities
- Understand specific suggested strategies to mitigate airborne viral transmission, along with justification for strategies and potential implementation issues
- Review potential updates to guidance and possible changes to design strategies in future

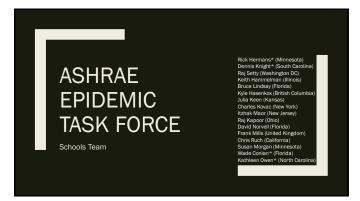
2

Acknowledgements

- ASHRAE Epidemic Task Force (ETF)
 - Bill Bahnfleth, Dennis Knight, Wade Conlan, many other members
- ASHRAE ETF Schools Team
 - Rick Hermans
- Other ETF Teams and Leads
 - Building Readiness, Residential, Filtration & Disinfection, Healthcare, Commercial, Transportation – More to Come
- ASHRAE Technical Committee 5.5 Air-to-Air Energy Recovery

ASHRAE Resources
Building Readiness: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-building-readiness.pdf
Schools and Universities: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-reopening-schools-and-universities-c19-guidance.pdf
Filtration and Disinfection: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-filtration_disinfection-c19-guidance.pdf
Multifamily: https://www.ashrae.org/file%20library/technical%20resources/covid-19/covid-19-guidance-for- multifamily-building-owners_managers.pdf
Healthcare: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-healthcare-c19-guidance.pdf
Commercial: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-commercial-c19-guidance-08-17-20-pdf
Transportation: https://www.ashrae.org/file%20library/technical%20resources/covid-19/ashrae-transportation-c19-guidance.pdf

- SARS-CoV-2 Virus
- Research and Information
- Significant work being done
- More available improving reliability/certainty
- Other key information
 Initial focus on mitigating transmission
 still prevalent
 Social Distancing
 Cleaning of surfaces
 PPE
 Atheres transmission pages focus


 - Airborne transmission now a focus
 WHO acknowledged on July 9th
 CDC acknowledged on October 5th
 Level of concern varies

5

What don't we know?

A lot.

- Viral Shedding Rate
- Difference for different activities?
- Different for different genders or ages?
- Infectious Dose
- Percentage of cases from each transmission pathway
- Where the virus goes when it's airborne
- Best air distribution strategies

Important Assumptions*

- Occupant Health/Safety is the Focus
 Energy Efficiency is Secondary
- Social Distancing and PPE Used to Extent Possible (meet requirements of CDC, OSHA, state Public Health Department, etc.)
- Proper Cleaning Protocols in Place (meet applicable recommendations/requirements)
- Buildings have code-required ventilation
 Frequently not a valid assumption
- Means for control exist
 - Not always a valid assumption

8

Reopening Schools and Universities Guidance Document

- Mitigation, not elimination
 Initially posted in early May
- Updates July 17th and October 7th Work Started in April rapid response
- Work Continues

 New Information

 Ore Principles

 Shift to Heating (for many areas)
- Refer to other sources for public health guidance

ASHRAE EPIDEMIC TASK FORCE		1
coduction (disposed and General Recommendators meni Operations Defenences terminals publics Residences (Codelità for Uncouncies Buildings)	Sex Modified Facility Design Recommendations Introduction Designer Guidelines - General School Nurses Office - General Requirements	
Startup Checkink for HVMC Systems Prior to Coupancy Construent A. Spalem Startufe Checks A. McEllostons Ducina Academic Year Cleaning A.M. Floats Ecology Chiles L.H. & Condenser Winter Systems A.M. Cooled Chilers	Elitration Literature Introduction Elitration Basics Elitration Basics Elitration Daviet Level Information California Stage Data Features & Renters Implementation & Considerations	
Water Cooled Chillers Cooling Towers & Evigonative-Cooled Devices Steam Databation Systems HAVE Water Databation Systems	Operation of Occupied Facilities Controlling Infection Outbreak in School Facilities	
Trees. The Manager Appears De Manager Line At Manager Line Book Table Book Table Line Line Line Line Line Line Line Lin	Higher Education Excitions - Student Health Facilities - Student Health Facilities - Laborations - Advisor Studies - Pacificial Tacilities - Resident Tacilities - Lacut Assembly - Decidence	ASHRAE

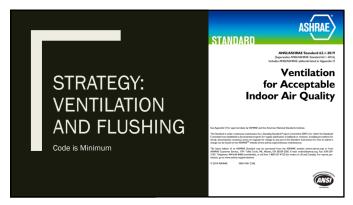
Key Concepts

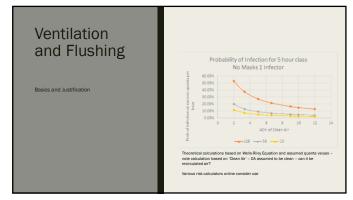
- Checklists
- Verify HVAC System Design

 - Do systems provide code-required ventilation (ASHRAE Standard 62.1)
 Do systems maintain acceptable conditions
 - What are system capacities
- Ensure Building Systems Operate as Intended
 - Trending with controls

 - Trending with controls
 Testing and Balancing
 Review Air Distribution/Mixing
 Retrocommissioning*
 Calibration of sensors*
 Check IAQ trouble spots
 Check leakage at energy recovery devices*

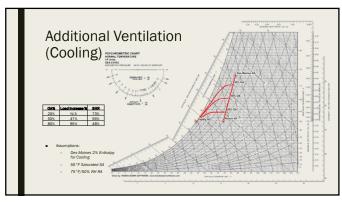
10


Key Concepts

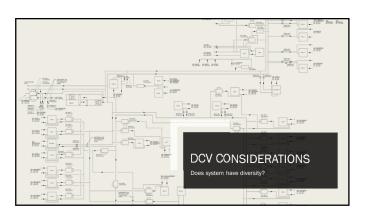

- Ventilation and Flushing
- Increase Filter Efficiency (MERV Rating) Where Possible
- Make Minor Modifications to Control Sequences
 Building Flushing Between Occupancy
 Demand-Controlled Ventilation (DCV)
 Changes
- Other Possible 'Improvements'
 - Portable HEPA Filtration Units
 Humidification

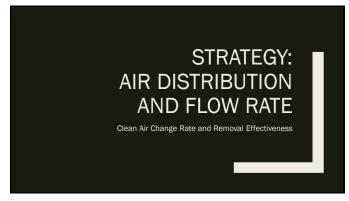
 - Other Treatment Technologies

11



14

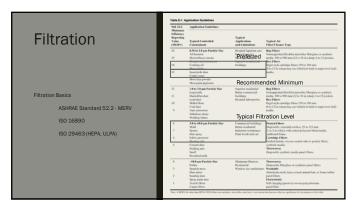

Ventilation and Flushing Intent is to remove contaminants General recommendation is 2-hours In schools guidance Building Readliness guidance recommends 3 air changes of outdoor air, or 2-hours Many buildings may need less than 2-hours Likely to require control sequence modifications System capabilities need to be reviewed

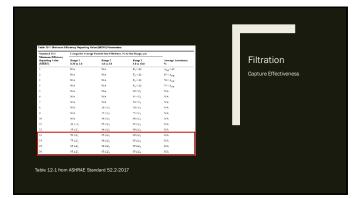

■ Goal is to Dilute Contaminants Using Outdoor Air Ventilation and Flushing - Code is minimum - increases may be appropriate - System Capacities (cooling/heating) must be considered - Limit increase to maintain IAQ Should ensure spaces receive adequate ventilation Verify system design and strategy for implementation

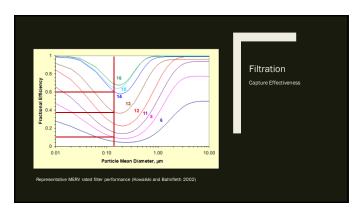
16

17

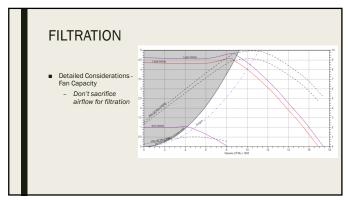
Air Distribution and Flow Rate


esses for now - work being done


- Best Distribution Strategy


 - Various suggestions/recommendations
 - Target is good mixing without creating drafts between occupants
- Reduced Air Flow Rates
 - VAV at reduced flow reduced dilution?

20


Filtration

- Goal of MERV 13 or better
- Considerations

 - Which units need it (DOAS?)
 Filter rack configuration and condition
 - Additional pressure drop does system have capacity
 Filter type (mechanical, charged, etc.)

 - Terminal equipment

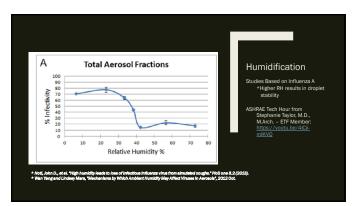
25

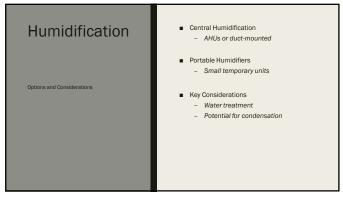
26

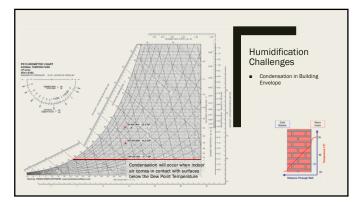
Filtration

- Filter Type
 - MERV (might be enhanced charged)
 - MERV-A (mechanical only)
 - ISO, HEPA, etc. (too much for equipment?)
- Terminal Equipment
 - What filters are available?
 - What is replacement frequency?
 - What is system configuration?
 May consider adding portable HEPA units to space

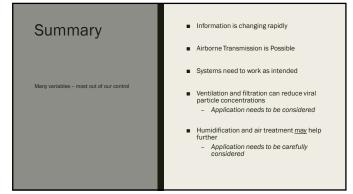
Filtration


Room Air Clean


- Guidance coming from ASHRAE ETF
 - HEPA or high MERV (13 or better)
 - Clean Air Flow Rate
 - Considerations on Sound and Placement
- Other Resources:
 - <u>Harvard-CU Boulder Portable Air</u> <u>Cleaner Calculator</u>
- Other Key Considerations:
- Filter type/availability
- Consistency for maintenance


28

29



- Multiple Technologies
- Generally aim to deactivate viral particles
- Some may cause particles to agglomerate
- Consider claims, independent testing, standards, etc.
 - Do not reduce ventilation air

35

