

_			
_			

Agenda

- Overview
 - -Definitions
 - -Basic Options
- Description of M & V Options
- Examples

4

IPMVP*

*International Performance Measurement and Verification Protocol

The IPMVP

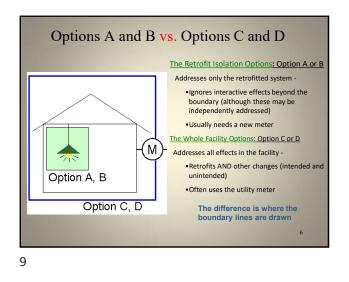
- Is a framework of definitions and methods for assessing energy savings
- Was designed to allow users to develop a M&V plan for specific projects using the framework of definitions
- Was written to allow maximum flexibility in creating M&V plans that meet the needs of individual projects, but also adhere to the principles of accuracy, transparency and repeatability
- transparency and repeatability
 Is policy neutral

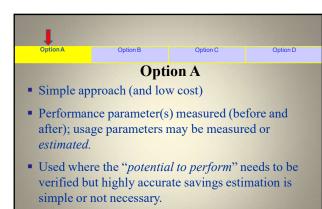
Does not cover

- Program evaluation (M&V is about project evaluation - which can be part of a program evaluation)
- Operations and maintenance or demand response
- Determining net savingsSample (site) selection for impact
- evaluation

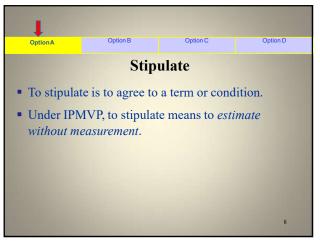
 Design of meter and
- instrumentation systemsCost estimating of M&V activities
 - Cost estimating of Max activiti

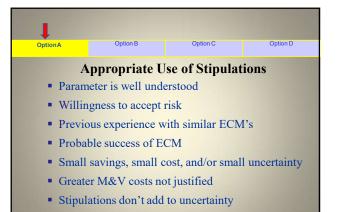
IPMVP Summary of Options

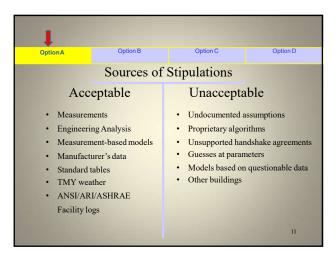

- The IPMVP has four M&V options: Options A, B, C, and D
- The options are generic M&V approaches for determining energy savings from projects
- Four options provide a range of approaches to determining energy consumption/cost Avoidance, depending on the characteristics of the energy efficiency projects being implemented, and balancing accuracy in reporting with the cost of conducting M&V.

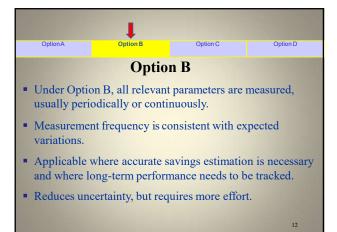

6

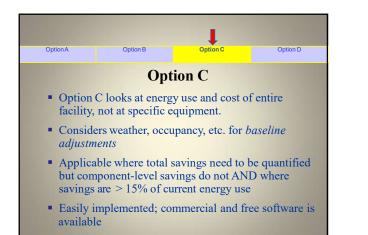
Impact Evaluation Concepts	
 Impact evaluations are used for determining directly achieved project benefits (e.g., energy and demand savings, co-benefits) 	
 Savings cannot be directly measured, only indirectly determined by comparing energy use after a project is implemented to what would have been consumed had the project not been implemented (i.e., the baseline) 	
 Evaluation attempts to measure "what did not happen." Impact = Actual_{post} - Projected_{pre} ± Adjustments 	
 Since it is an estimate, with uncertainty, the fundamental questions are: How good is good enough? Compared to what? 	

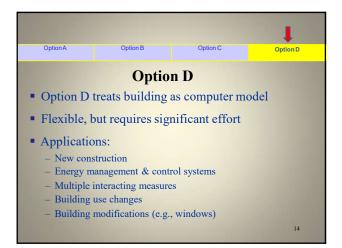

7

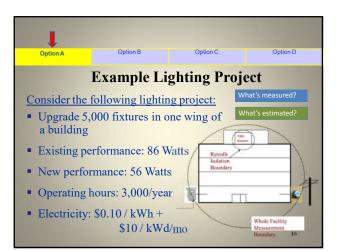

Option A	Option B	Option C	Option D
	IPMVP M	&V Options	5
• Option A - R	etrofit Isolation: Key	Parameter Measurer	nent
Parameter	e determined by field means (s) which are not measur (angineering judgment, and	red are estimated. Estima	ted parameter(s) are
• <u>Option B</u> – F	Retrofit Isolation: All F	Parameter Measuren	nent
	n Option A through the u ameters. Savings are deter data		
• <u>Option C</u> \	Whole Facility		
impact of	e savings by examining over measures on total building de meters (typically utility	g or facility energy use. R	equires comparison of
• Option D –	Calibrated Simulation	1	
can be use assure acc	e use of software to creat ed to examine individual n uracy the model is calibra nsumption or end-use mo	neasures or entire facility ted through comparing it	savings. In order to

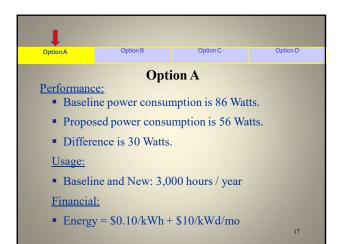


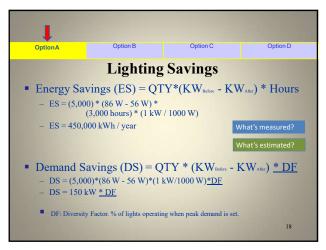

Option A is NOT "stipulated savings" !

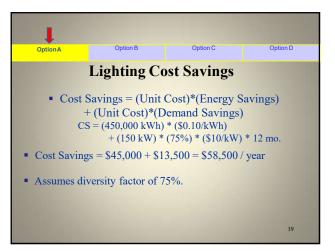


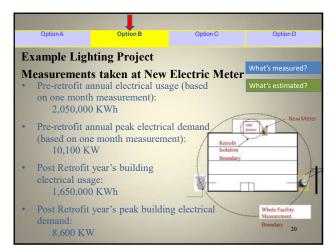


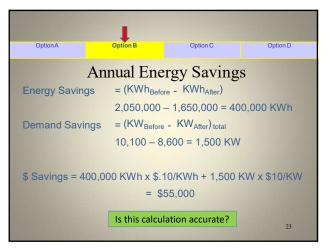

- Monitoring serves no other purpose

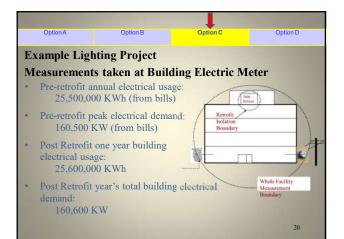


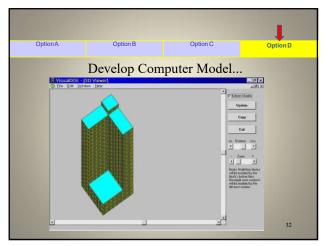




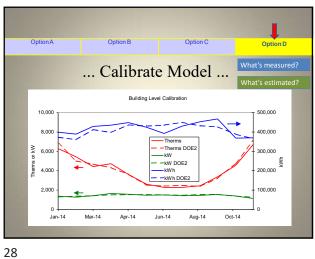




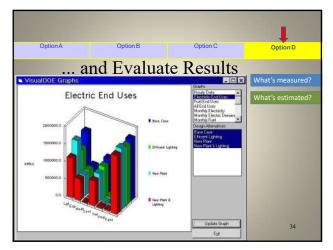



		Ļ	
Option A	Option B	Option C	Option D
	Annual End	ergy Saving	S
Energy Saving	s = (KWh _{Bef}	_{ore} - KWh _{After})	
Demand Savir	igs = (KW _{Befor}	0 – 25,600,000 = _e - KW _{After}) _{total} 160,600 = -100 k	·
\$ Savings = -1		.10/KWh + -100 ł <mark>\$11,000)</mark>	KW x \$10/KW
			23
.5			

 OptionA
 Option B
 Option C
 Option D


 Example Lighting Project

 Pre-retrofit Measurements taken at Building Electric Meter


 • Incorporate lighting modifications by computer modeling building.
 • Baseline is existing building before lighting modifications.

Iption A	Option B Op	tion C Option
(Comparison of Opt	tions
Option	Energy Savings as % of Total within Boundary	Cost Savings
A	34.8%	\$58,500
В	19.5%	\$55,000
С	1.6%	(\$11,000)
D	1.7%	\$46,345
		$\frac{56 w}{36 w} = 65.1\%$

Review

- Total energy use and savings are functions of both usage and performance.
- Options A and B are retrofit-isolation methods.
- Options C and D are whole-facility methods.
- Can mix and match methods.
- Selection of M&V method based on need to verify savings cost-effectively.

37

37

32

GROUP DISCUSSION

WHAT OPTION SHOULD BE USED FOR EACH OF THESE PROJECTS?

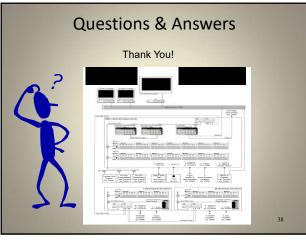
- Convert building from electric heat to hydronic gas-fired condensing hot water system
- Install 1.5 MW solar photovoltaic system on building roof
- Campus wide replacement of steam traps
- Construct LEED platinum building in lieu of LEED silver

```
Option 8: "Retrofit Isolation, Key Parameter"

- Based on measured equipment

based on measured equipment

operational factors, and annual verification of


"potential to perform."

Option 8: "Retrofit Isolation, All Parameters"

- Based on measurements (usually periodic or

continuous ) taken of all relevant parameters.
```

```
continuous ) taken of all relevant parameters
Option C: Based on whole-building or
facility-level utility meter data adjusted for
weather and/or other factors.
Option D: Based on computer simulation of
building or process; simulation is calibrated
with measured data.
```