

ICS Org Chart	
Incident Commander Public	_
Safety Officer - information Officer -	
Operations Planning Section Finance Section Logistics Section Chief	
Divisions and Groups	
4	

Wastewater-Based Epidemiology for Averting COVID-19 Outbreaks on The University of Arizona Campus

10

WASTEWATER-BASED EPIDEMIOLOGY (WBE)

- Rapidly growing discipline formerly known as "sewage surveillance"
- Relies on testing wastewater from a given community for the presence of a particular virus
- Answers the questions: "Is the virus in that community?" "Is there a pandemic?"
- Concentration of the virus gives an indication of the severity of the pandemic

11

WBE: CONCEPT FOR CORONAVIRUS

- Infected individual shed the virus in feces which then enters wastewater (sewage)
- Shedding occurs up to 7 days prior to visible symptoms
- Shedding at a maximum at onset of symptoms
- Shedding continues 2-4 weeks after disappearance of symptoms

BENEFITS OF WBE

- One test monitors defined community such as wastewater treatment plant service area or student dorm
- Highly sensitive: can detect 1 infection in 10,000 individuals
- Gives total virus load shed into wastewater including virus from symptomatic and asymptomatic individuals
- Is a leading indicator can be detected in sewage up to 7 days prior to symptoms developing

13

ADDITIONAL BENEFITS OF WBE

Useful for detecting onset of a pandemic

- Quantitative data over time determines if pandemic is \uparrow or \downarrow
- Allows determination of whether or not a community could/should return to work
- Can be used to evaluate the success (or lack thereof) of
 interventions such as mandated mask usage or social distancing
- Correlation of virus wastewater concentration (gene copies) with the number of clinical cases allows for future predictions of #s of infections

14

LIMITATIONS WITH CLINICAL DATA

- · Limited test availability
- Test negative on Monday What about Tuesday?
- Asymptomatic carriers often not tested
- Lag in reporting cases
- Test efficacy: False –ve and False +ve results

COVID-19 DISEASE				
Coronavirus	COVID-19 Disease Symptoms			
4.50	Common	Uncommon	Rare	
A STATE	Fever	Headache	High fever	
24 4 M A & A	Dry cough	Nasal congestion	Coughing up blood	
	Fatigue	Sore throat	Decreased white blood cell	
		Shortness of breath	Kidney failure	
CONTRACT.		Pain in muscles/joints		
3. A		Chills		
S 4 30		Nausea and/or vomiting		
- 4 4		Diarrhea		
		More recently: long haulers?		

BUT

- 70-80% only mild symptoms or asymptomatic (we think!)
- Hence, mortality rate compared to number of infections is unknown
- Young individuals are infected less frequently and with milder symptoms (usually!)

COVID-19 CASE	S WORLDWIDE
Most Cumulative Cases	Most Cases per Capita
U.S.	U.S.
Brazil	South America
India	Europe

 WASTEWATER-BASED EPIDEMIOLOGY

 Virus concentration
 Virus concentration

 Virus concentration
 Output

 Virus concentration
 Output
 Output
 Output
 Output
 O

WEST CENTER MONITORING OF COVID IN SEWAGE FROM WASTEWATER TREATMENT PLANTS

- WEST WEBSITE (March 2020): offer to test samples nationwide for a fee
- March \rightarrow August 2020, over 300 samples analysed
- Samples from all over U.S. including Los Angeles, New York, Seattle Jacksonville (FL)
- Raw wastewater samples often +ve
- Always –ve after 2° treatment and disinfection

META DATA

- Basic collection data: date, time, location
- Type of sample: raw sewage or after treatment
- WWTP service area
- Number of individuals served
- Number of cases in service area (on that date)
- Number of deaths (on that date)
- Look for correlations with virus concentration in wastewater

SENSITIVITY OF WBE: AGUA NUEVA WWTP

"Stay at home" order in Arizona

 Approximately 2-4 weeks later, virus concentrations and case count decrease

- "Re-open economy" order in Arizona
 - Approximately 7 days later virus concentrations increase
 Approximately 2 weeks later, case count increases
- Three National holidays: Memorial Day, Independence Day, Labor Day
 Approximately 1 week after each holiday virus concentrations increase
 - Approximately 2 weeks after each holiday case count increases

	Compare		tau	р	Z			
	conc	model	0.898933	0.000328	3.5921			
	conc	infection	0.6	0.01667	36			
	model	infection	0.595437	0.007348	2.6806			
	conc	new	0.466667	0.07255	33			
	model	new	0.473296	0.03311	2.1308			
 Modeled data is synonymous with observed data 								
Modeled data positively correlates with total infections								
 Model data positively correlates with new cases 								
 Observed RT-qPCR does not correlate with new cases, modeled data is more 'accurate' 								

UNIVERSITY OF ARIZONA STUDENT RE-ENTRY PLANS FOR FALL 2020

- 7 teams established:
- COVID-19 testing of humans (RT PCR)
- Antibody testing (Elisa IgG Antibody Test)
- Contact tracing (In person and app. Based)
- Isolation (segregated dorms or hotels
- Health Data Management and Communication (HIPAA and FERPA compliant data management)
- Thermometry (temperature measurement of individuals)
- WBE: US! (Dormitory testing for early detection of in-house infections)

29

CURRENT DORMS TESTED

- Maricopa
- Kaibab/Huachuca/Arizona
- Sonora
- Arbol de la Vita
- Graham/Greenlee
- La CienegaSan Pedro
- Santa Cruz
- LIKINS

• La Paz

Collecting Wastewater from Dorms

31

HOW WBE REDUCED EXPONENTIAL SPREAD OF COVID-19

- The two infected students were asymptomatic
- Without WBE detection and isolation, they would have spread COVID-19 to other students
- This scenario has been repeated multiple times
- Now in 8th week of the semester: case count minimal
- University has successfully remained open
- Influence of "Shelter in Place" reflected in wastewater virus concentrations

34

EFFICACY OF WBE

- To date, false positives rare
 - Positive wastewater = someone infected
- False negatives can occur more frequently
 - No shedding or low shedding rates
 - PCR inhibition

35

OVERALL STORY RESULTED IN MEDIA FRENZY!

- Broadcasts with CNN, NPR, CBS, NBC, ABC
- Publications in "The Atlantic" and "Politico"
- · 300 media hits in September

National Headlines

The University of Arizona says it caught University Of Arizona Prevented a dorm's covid-19 outbreak before it Coronavirus Outbreak On Campus By Testing Wastewater started. Its secret weapon: Poop. Poop tests stop COVID-19 How the University of Arizona used No. 2 outbreak at University of Arizona to solve its No. 1 problem: The coronavirus UA wastewater testing finds COVID-19 cases in dorm University of Arizona's wastewater testing halts potential surge in COVID-19 cases at dorm University of Arizona wastewater testing finds virus at dorm prevents outbreak finds virus at dorm, prevents outbreak University of Arizona catches asymptomatic Wastewater helps find positive COVID-19 cases at UA dorm coronavirus cases through wastewater testing

37

What have we learned – sewage monitoring for SARS-CoV-2 at the University of Arizona and Tucson

- · Grab samples collected in the morning work sufficient no need for composite sampling
- Can identify as few as 2 infected student dorms of ~300
- No viruses detected in sewage after infected students removed
- Four-day lead on identifying cases before positive clinical test by student health center
- · Concentration of virus increases in community sewage after Memorial Day, 4th of July and Labor Day before increase seen in clinical cases
- · Social distancing and use of masks decreased concentration of virus

38

ESTIMATION OF # OF ASYMPTOMATIC CASES Sewage concentration x Wastewater flow rate

Infected People

i heoretical d

Amount of feces x fecal shedding rate

Theoretical # infected people minus actual reported cases = # asymptomatic cases

- Big unknown fecal shedding rate
- BUT from Student Dorm Study
- # cases known (clinical tests)
- Back calculate shedding rate
- Use equation to predict total # cases
- Limitation = issues with clinical testing

WASTEWATER-BASED EPIDEMIOLOGY

POOP NEVER LIES!

University of Arizona