

APPA Institute for Facilities Management

Energy Systems of Michigan State University

A hybrid energy microgrid / district energy system

Sherri Jett, Director of Utilities

1

Purpose of Today's Presentation

To provide a broad understanding of Michigan State University hybrid energy systems

2

University Overview

- Founded in 1855
- Pioneer land-grant institution
- Academic and research
- ~50,000 students
- ~13,000 faculty & staff
- East Lansing, MI campus:
 - 5,300 acres
 - >560 buildings and structures (108 academic)
 - ~25 million GSF building space

Resiliency Savings Cost Emissions https://en.wikipedia.org/wiki/Northeast blackout_of_2003

Connected Campus Loads UTILITY MILLION GSF Steam 18.2 Electricity 21.6 Potable Water 22 UTILITY % TOTAL GSF Steam 87.4 Electricity 73.7 Potable Water 89

Central Plant Infrastructure U1: Steam boiler / turbine U2: Steam boiler / turbine 1965 1965 12.5 12.5 250 U4: Steam boiler / turbine U5/6: Combustion turbine / HRSG / steam turbine U7/8/9: RICE Plant (3 x 9.4 MW engines) 1993 21 150/310 2006 24 + 13.5 110 2022 27.9 U7: Auxiliary Boiler N+1 CAPACITY(3) 99.9 510/765 FY21 Peak Campus Demand FY21 Average Campus Demand 38.6 280.4 Anaerobic Digester CE Electrical Tie-Line 2013 0.45 2016 100 Solar Carport South Solar Farm 11.5 peak 20 peak 2017 ***NEW*** 2023

14

CHP Plant Unit 4 CFB Transition to Natural Gas

- Moved burners
- 100% silica sand for fluidized bed
- Erodes refractory & loop-seal expansion joints → hot spots
- Increased baghouse bag wear
- Respirable Crystalline Silica (RCS) above Permissible Exposure Limits resulting in mitigation measures for workers in affected confined space

16

CHP Plant Unit 5/6 Overview

17

RICE Plant Units 7/8/9 Overview Reciprocating Internal Combustion Engines

- 3 x 9.4 MW engines (future 4th)
- 41% efficient (HHV gas)
- Full speed in < 5 minutes
- Operate as peaker units
- Allows the CHP plant to operate more efficiently
- Have reduced total fuel gas consumption 11-12%

Auxiliary Boiler 10 Overview

- 200,000 lb/hr steam @ 90 psi
- Tied directly to campus send-out-steam
- Plan to operate as a peaker unit to meet peak campus steam demands
- Expected to allow us to operate the CHP plant more efficiently, reducing total fuel gas consumption by 10%
- Expected to be in operation by end of 2022

19

20

Organic Waste Equals Energy

26

Digester Feedstock

Feedstock	TS	Planned		2014		2015		2016	
	(%)	(tons)	(%)	(tons)	(%)	(tons)	(%)	(tons)	(%)
Dairy manure	12	7,000	43	16,000	67	9,525	43	10,554	52
Fruit & vegetable	11	3,900	24	2,900	12	2,900	13	0	0
Fats, oil & grease	20	5,000	30	4,400	19	3,730	17	4,747	23
Cafeteria food waste	10	750	3	430	2	440	2	513	3
Milk process waste	12					5,475	25	4,444	22
Packing material	90					60	-	34	-
Glycerin	15							88	-
Total		16,650		23,730		22,070		20,380	

Annually

- \bullet ~2,000 garbage truck loads kept out of landfill
- ~3,000 MWh of electricity generated
- ~20,000 tons of organic fertilizer produced

28

Solar Carport Site Selection

29

Solar Carport Design

- 45 acres
- 5,000 parking spots
- 40,000 solar panels
- 10.5 MW ac peak power
- 15,000 MWh/yr
- Up to 18% campus peak power demand
- 5-7% of annual campus demand

Enough electricity for 1800 Michigan households!

2	Λ
J	U

Solar Carport PPA

- Purchase net produced power at a fixed \$/kWh price over 25 years
- Only investment by MSU is the cost of interconnect
- Developer is responsible for O&M
- Projected total net savings of about \$10M over the 25-year PPA period based on projected energy cost inflation of 2.3%/year

31

32

South Solar	Farm	Location
-------------	------	----------

South Solar Farm Interconnection

35

South Solar Farm Project

- Purchase net produced power at a fixed \$/kWh price over 35 years
- MSU receives Renewable Energy Credits (REC)
- Only investment by MSU is the cost of interconnect equipment
- Developer is responsible for O&M
- Projected NPV of \$15-17M over the 35-year PPA period based on projected energy cost inflation of 2.3%/year and 4% discount rate

Energy	Conser	vation	Measure	S
--------	--------	--------	---------	---

- The #1 thing anyone can do to reduce cost and emissions
- If the power or steam is not needed, we don't have to produce it

Energy Conservation Measures

- In 2010, initiated a steam trap management program reducing average failure rate from 21% to 3%
- In 2011, MSU committed to reduce building energy use 20% by 2020 as part of the Better Building Challenge, we surpassed this goal 2 years ahead of schedule through:

 - Building retro-commissioning
 Conversion of HVAC to Variable Air Volume and Variable Frequency Drives
 - HVAC control system upgrades
- Replacing fluorescent-light fixtures with TLED tubes which reduced lighting electrical consumption by about 50% and require less maintenance labor of their lifespan

38

Current Status

INTEGRATED **UTILITY MASTER PLAN**

Key Takeaways

- Complex hybrid-energy microgrid supporting our East Lansing Campus
- Expect to reduce Scope 1 & 2 GHG emissions reduction by 50% from 2010 baseline well before 2030 goal
- Undergoing an Integrated Utility Master Planning effort including an assessment of:
 - \bullet Utility generation and distribution equipment condition assessment
 - Campus energy model and forecast demand development
 - $\bullet\,$ Options evaluation to cost effectively move towards carbon neutrality
- Energy conservation is essential to any plan

41

Questions / Comments

Sign-in Sheet / Evaluation Form

Sherri Jett jettsher@msu.edu