

COOLING PRODUCTION

Credit(s) earned on completion of this course will be reported to American Institute of Architects (AIA) Continuing Education Session (CES) for AIA members.

Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

AIA Continuing Education Provider

8/22/23

Purpose of Today's Presentation

To provide a broad understanding of cooling production systems

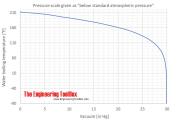
Science

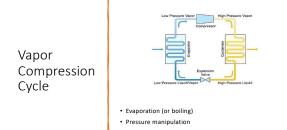
5

Cooling Production = Heat Rejection

Evaporation

Water absorbs heat from the body


Process of evaporation from liquid to gas
AZ vs. FL



7

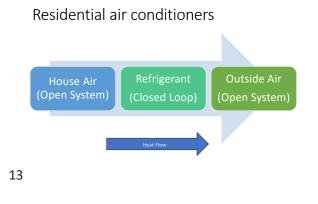
Common Refrigerants

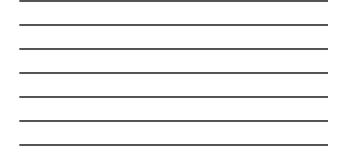
Chlorofluorocarbons (CFCs)

- Hydrochlorofluorocarbons (HCFCs)
 Hydrofluorocarbons (HFCs)
 Natural Refrigerants

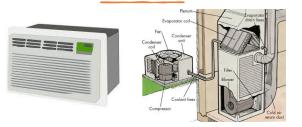
https://en.wikipedia.org/wiki/List_of_refrigerants

	REFRIGERANT TYPE	CLASS	OZONE DEPLETION POTENTIAL	GLOBAL WARMING POTENTIAL
Risks with	CFC	Synthetic	High	Very High
	HCFC	Synthetic	Very Low	Very High
Refrigerants	HFC	Synthetic	Zero	High
	HC	Natural	Zero	Negligible
	CO2	Natural	Zero	Negligible

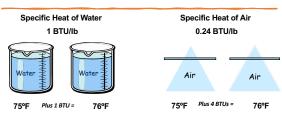

Very Low	Very High
Zero	High
Zero	Negligible
Zero	Negligible

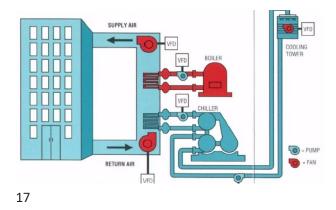

11

10

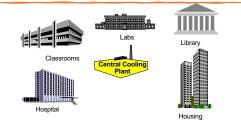


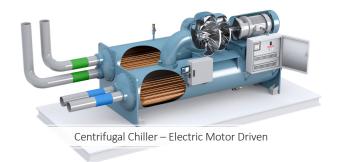
Refrigeration & Air Conditioning


Residential air conditioners



Water - Ideal Heat Transfer Fluid




District Cooling

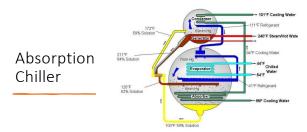
Centrifugal Chillers

23

5,000 Ton Centrifugal Chiller

Types of Prime Movers

Electric motor


Steam turbine

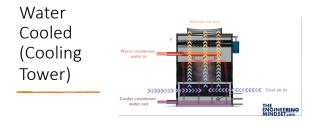
Combustion turbine

 Combustion engine (diesel or gasoline)

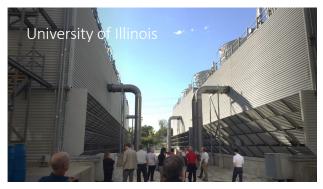
25

26

Absorption Chiller


Condenser Types

• Air Cooled • Water Cooled


29

Air cooled condensors

Hidden in parking garage

Pumps & Piping

Thermal Energy Storage

Thermal Energy Storage

Benefits

- Shifting system load demand
- Stability of cooling capacity
- Dual-duty operation
- Managing energy costs

Cooling Load Profile Shaving the Peak with TES

Reduction in demand charges

Efficient Chiller Operation

- Chillers Variable speed drive Mechanical unloading
 Towers Variable speed drives on fans and pumps
 Distribution Pumps Variable speed drives on pumps
- Good Maintenance
- Metering / Analytics
- Thermal Energy Storage
- Free Cooling

43

Questions

Lalit.Agarwal@EnergyCAP.com