HEATING AND COOLING DISTRIBUTION

JEFF ZUMWALT LARRY SCHUSTER

AIA Continuing Education Provider Credit(s) earned on completion of this course will be reported to American Institute of Architects (AIA) Continuing Education Session (CES) for AIA members.

Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

HEATING DISTRIBUTION

OVERVIEW

- Radial or Looped
- How Pipe Fails
- Steam or Hot Water
- Pipe Materials
- Direct Buried or Tunnel
- Costs
- Design Considerations

RADIAL OR LOOPED

Radial

Looped

HOW PIPE FAILS

Corrosion Expansion Water Hammer Excavation

CORROSION

External and Internal

Water + Iron + Oxygen = Rust

Solution: No Water, No Iron, or No Oxygen

EXPANSION

70°F to 270°F

Force of 100 tons

Solution: Add Flexibility

EXPANSION

EXPANSION

STEAM INDUCED WATER HAMMER

Solution: Remove condensate from steam line

STEAM INDUCED WATER HAMMER

STEAM INDUCED WATER HAMMER

Traps Float Inverted Bucket Thermostatic Thermodynamic Nozzle

STEAM TRAPS

STEAM INDUCED WATER HAMMER

EXCAVATION

CONTINUING COVERAGE

CALL BEFORE YOU DIG, IT'S THE LAW CONTRACTOR DID NOT HAVE VALID 8-1-1 TICKET

Know what's **below. Call before you dig.**

5:01

DIRECT BURIED PIPE

STEEL

High Temp. = Steel
Corrosion
+ Expansion
+ Water Hammer
Excavation

\$500 - \$1,000/ft

DIRECT BURIED PIPE - STEEL

DIRECT BURIED PIPE

PLASTIC

Low Temperature: Plastic is an option

+ Corrosion
+ Expansion
+ Water Hammer
- Excavation?

\$400 - \$700/ft

TUNNELS

+ Corrosion
+ Expansion
+ Water Hammer
+ Excavation

\$4,000 - \$7,000/ft

SHALLOW TRENCH

+ Corrosion
+ Expansion
+ Water Hammer
+ Excavation

\$2,000 - \$3,000/ft

COMPARISON

Direct-Buried

- + Simple and fast
- + Lowest cost
- Less reliable
- More disruption

Tunnel

- + High reliability
- + No disruption

Very expensiveLow flexibility

Shallow Trench

- + Good reliability
- + Low disruption
- Expensive
- Low flexibility

DISTRIBUTION DESIGN

- System Concepts
 - Definitions
 - Basic Formulae
 - Δ**T**
 - Hydraulic Profile
- System Components
- System Configurations

DEFINITIONS

- System (Static/Fill) Pressure: The non-flowing pressure to which the system must be filled to assure flooding of the highest device.
 - System pressure is usually set so that there is at least 5 psig measured at the highest device in the system.
- Dynamic Pressure:
 - The flowing pressure the system pumps must develop to overcome the friction due to piping, coils, valves, fittings, and other devices in the system at a given flow rate.
 - Head loss, measured in feet of head = 2.31 ft.W.C./psi (.434 psi/ft)
- Design Pressure
 - The dynamic pressure the system pumps must develop at the *maximum* flow in the system.
 - The differential pressure between the supply and return piping at the pump, i.e. the **total head**

Fill Pressure, Makeup, and Expansion

System Pressure = .434 psi/ft X 120' + 5 = 57 psig

SYSTEM HYDRAULIC PROFILE

BASIC FORMULAE

$Q_{BTUH} \approx GPM \times \Delta T$

 ΔT = temperature difference between supply and return

SYSTEM COMPONENTS

- Pumps/ Piping
 - -Parallel Pumping
 - -Series Pumping
 - -Variable Speed Pumping
- Effect of ΔT on Pump Energy
- $\bullet \, {\rm Effect} \mbox{ of } \Delta {\rm T} \mbox{ on Pump Flow}$
- Effect of ΔT on Dynamic Pressure

PUMPS

- Driving force to move water in piping
- Provide pressure and flow
- Primary type
 - -Centrifugal

SYSTEM CURVE

The system curve is a plot of friction losses (in head or pressure) for a piping system versus flow rate

MULTIPLE PUMPS

Centrifugal pump in series are used to overcome larger system head loss than one pump can handle alone. For two identical pumps in series the head will be twice the head of a single pump at the same flow rate. With constant flowrate, the combined head moves from 1 to 2. In practice the combined head and flow moves along the system curve to 3.

Centrifugal pumps in parallel are used to overcome larger volume flows than one pump can handle alone. For two identical pumps in parallel the flowrate, will double (moving from 1 to 2) compared to a single pump if head is kept constant. In practice the combined head and volume flow moves along the system curve as indicated from 1 to 3.

VARYING PUMP SPEED

 $Q_{BTUH} \approx \text{GPM} \times \Delta \text{T}$

Affinity Laws: *If speed is decreased by 10%,* <u>Law I</u>: Flow is Proportional to Shaft

Speed.

Flow is decreased by 10%

Law 2: Pressure is Proportional to the Square of Shaft Speed.

Pressure is decreased by ~18% (1-.90²)

Law 3: Power is Proportional to the Cube of Shaft Speed. Power is decreased by ~27% (1-.90³)

PIPING SYSTEM

Fittings

Expansion Tank with 1/2" Female NPT Connection

flow sensor water supply pipe water return pipe

temperature sensor

CHILLED WATER COILS

$\textbf{DYNAMIC PRESSURE VS} \ \Delta \textbf{T}$

 $Q_{BTUH} \approx \text{GPM} \times \Delta \text{T}$

- Increasing supply-to-return differential temperature requires less flow for same heat transferred
- Less flow in a given pipe system results in lower velocity
- Lower velocity equals lower friction and lower pressure loss
- Lower pressure and flow equals lower energy

Three Rules for Chilled Water System Optimization

Reduce Flow Reduce Flow Reduce Flow

Variable Primary Only (One unit on)

Load equals 1 chiller = 1000 gpm @ $12^{\circ}F \Delta T = 500$ Tons

Variable Primary Only (Two units on)

EFFECT OF Δ **t on Pipe Capacity & Cost** TONS CAPACITY

CHILLED WATER PIPING CAPACITY

PIFE SIZE VS. TONS - RUDG, 3/0, FF PER WATER SIDE TEMPERATURE DEFENSIVE AC

DIRECT BURIED PIPE		WATER SIDE TEMPERATURE RISE, TA GPM/TON						
DIAMETER DIAMETER	GPM VEL FT/100 FT HP COST	10° F 2.4	12° F 2.06	14° F 1.7	16° F 1.5	18° F 1.33	20° F 1.20	24° F 1.0
Assume yo 2,000 Tons	ou need 1,000' of pipe for a l	oad of	30,000 (9,000)	35,000 (10,500)	40,000 (12,000)	45,000 (13,500)	50,000 (15,000)	60,000 (18,000)
42″	40,000 GPM 9.2 FPS 0.8'/100' 200 HP \$2,200/LF	16,000 (4,800)	20,000 (6,000)	24,000 (7,200)	27,000 [8,000]	30,000 (9,000)	34,000 (10,000)	40,000 (12,000)
	a IOF ∆T, 4,800 GPM is requ I6" pipe, \$800,000	12,500 (3,600)	15,000 [4,500]	17,500 (5,300)	20,000 (6,000)	22,500 (6,800)	25,000 (7,500)	30,000 (9,000)
	$16F \Delta T$, 3,000 GPM is requ	ired	10,000 (3,000)	12,000 (3,600)	13,000 (4,000)	15,000 (4,500)	17,000 (5,000)	20,000 (6,000)
24"	12" pipe, \$650,000	5,000 (1,500)	6,000 (1,800)	7,000 (2,100)	8,000 (2,400)	9,000 (2,700)	10,000 (3,000)	12,000 (3,600)
18"	7,000 GPM 9.5 FPS 2.0'/100' 100 HP \$1,000/LF	3,000 (900)	3,500 (1,050)	4,000 (1,200)	4,600 (1,400)	5,200 (1,600)	6,000 (1,800)	7,000 (2,100)
16″	5,000 GPM 9.0 FPS 2.8'/100' 100 HP \$800/LF	2,000 (600)	2,500 (750)	3,000 (900)	3,500 (1,050)	3,800 (1,100)	4,000	5,000 (1,500)
14″	4,000 GPM 9.5 FPS 3.0'/100' 100 HP \$700/LF	1,700 (500)	2,000	2,400 (720)	2,700	3,000 (900)	3,400 (1,000)	4,000
12″	3,000 GPM 8.7 FPS 3.8'/100' 75 HP \$650/LF	1,250 (380)	1,500 (450)	1,800 (540)	2,000 (600)	2,300 (680)	2,500 (750)	3,000 (900)
10"	2,000 GPM 8.0 FPS 3.1'/100' 40 HP \$500/LF	800 (240)	1,000 (300)	1,200 (360)	1,300 (400)	1,500 (450)	1,700 (500)	2,000 [600]
8″	1,200 GPM 7.7 FPS 4.0.'/100' 35 HP \$400/LF	500 [150]	600 (180)	700 (200)	800 (240)	900 (270)	1,000 (300)	1,200 (360)
6″	600 GPM 6.7 FPS 4.0'/100' 20 HP \$300/LF	250 [75]	300 (90)	350 [100]	400 (120)	450 (1.40)	500 (150)	600 (180)
4″	200 GPM 5.0 FPS 4.0'/100' 5 HP \$200/LF	80 (24)	100 (30)	120 (36)	130 (40)	1.50 (45)	170 (50)	200 (60)

10" pipe - \$500,000 (1,200,000 GSF)

<u>125 psig system</u> 4" pipe - \$400,000 (100,000 GSF)

PIPE CAPACITY

QUESTIONSP

THIS CONCLUDES THE AMERICAN INSTITUTE OF ARCHITECTS CONTINUING EDUCATION SYSTEMS COURSE

AIA Continuing Education Provider