## HEATING AND COOLING DISTRIBUTION



JEFF ZUMWALT
LARRY SCHUSTER
Continuing
Education Provider

Credit(s) earned on completion of this course will be reported to American Institute of Architects (AIA) Continuing Education Session (CES) for AIA members.

Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

## HEATING DISTRIBUTION



HEATING/COOLING A CAMPUS



## OVERVIEW

- Radial or Looped
- How Pipe Fails
- Steam or Hot Water
- Pipe Materials
- Direct Buried or Tunnel
- Costs
- Design Considerations


## RADIAL OR LOOPED



Radial
Looped

## HOW PIPE FAILS



## Corrosion Expansion <br> Water Hammer

Excavation

## CORROSION

## External and Internal

Water + Iron + Oxygen = Rust

## Solution:

No Water,
No Iron, or
No Oxygen


## EXPAMSION

## 6" Pipe - 100 feet long

## $70^{\circ} \mathrm{F}$ to $270^{\circ} \mathrm{F} \quad 1.5^{\prime \prime}$ growth



Force of 100 tons

## Solution:

Add Flexibility

## EXPANSION



Stay bolts


## EXPANSION



## STEAM INDUCED WATER HAMMER

Steam


Slug
Steam


Solution:
Remove condensate from steam line

## STEAM INDUCED WATER HAMMER



STEAM INDUCED WATER HAMMER


## Traps

## Float

Inverted Bucket Thermostatic
Thermodynamic Nozzle

## STEAM TRAPS

Steam main
$\square$


STEAM INDUCED WATER HAMMER


## ExCavation



Know what's below. Call before you dig.

## PIPE



## DIRECT BURIED

## PIPE

## STEEL

## High Temp. = Steel

## + Expansion + Water Hammer

 $\$ 500-\$ 1,000 / f t$
## DIRECT BURIED PIPE - STEEL



## DIRECT BURIED

## PIPE

## PLASTIC



Low Temperature:
Plastic is an option

+ Corrosion + Expansion + Water Hammer - Excavation?
$\$ 400-\$ 700 / \mathrm{ft}$


## TUNNELS



+ Corrosion + Expansion + Water Hammer + Excavation
\$4,000 - \$7,000/ft


## SHALLOW TRENCH



+ Corrosion + Expansion + Water Hammer + Excavation
$\$ 2,000-\$ 3,000 / f t$


## COMPARISON

Direct-Buried<br>+ Simple and fast<br>+ Lowest cost

- Less reliable
- More disruption


## Tunnel

+ High reliability
+ No disruption
- Very expensive
- Low flexibility

Shallow Trench

+ Good reliability
+ Low disruption
- Expensive
- Low flexibility


# DISTRIBUTION DESIGN 

- System Concepts
- Definitions
- Basic Formulae
- $\Delta T$
- Hydraulic Profile
- System Components
- System Configurations


## WORDS OF WISDOM

 It's not how much you've got; it's whether you can use it.

## DEFINITIONS

- System (Static/Fill) Pressure: The non-flowing pressure to which the system must be filled to assure flooding of the highest device.
- System pressure is usually set so that there is at least 5 psig measured at the highest device in the system.
- Dynamic Pressure:
- The flowing pressure the system pumps must develop to overcome the friction due to piping, coils, valves, fittings, and other devices in the system at a given flow rate.
- Head loss, measured in feet of head $=2.3 \mathrm{I} \mathrm{ft}$.W.C./psi (. $434 \mathrm{psi} / \mathrm{ft}$ )
- Design Pressure
- The dynamic pressure the system pumps must develop at the maximum flow in the system.
- The differential pressure between the supply and return piping at the pump, i.e. the total head


## Fill Pressure, Makeup, and Expansion



## SYSTEM HYDRAUULIC PROFILE



## BASIC FORMULAE

## $Q_{\text {BTUH }}$ $\approx G P M$ $\times \Delta T$

$\Delta \mathrm{T}=$ temperature difference between supply and return

## SYSTEM COMPONENTS

- Pumps/ Piping
-Parallel Pumping
-Series Pumping -Variable Speed Pumping
- Effect of $\Delta \mathrm{T}$ on Pump Energy
- Effect of $\Delta T$ on Pump Flow
-Effect of $\Delta T$ on Dynamic Pressure


## PUMPS

- Driving force to move water in piping
- Provide pressure and flow
- Primary type
- Centrifugal



## SYSTEM CURVE

The system curve is a plot of friction losses (in head or pressure) for a piping system versus flow rate


## MUITIPIE PUMPS



Flow Rate - q
mono.engine


Flow Rate - $q$

Centrifugal pump in series are used to overcome larger system head loss than one pump can handle alone. For two identical pumps in series the head will be twice the head of a single pump at the same flow rate. With constant flowrate, the combined head moves from 1 to 2 . In practice the combined head and flow moves along the system curve to 3 .

Centrifugal pumps in parallel are used to overcome larger volume flows than one pump can handle alone. For two identical pumps in parallel the flowrate, will double (moving from 1 to 2 ) compared to a single pump if head is kept constant. In practice the combined head and volume flow moves along the system curve as indicated from 1 to 3 .

## VARYING PUMP SPEED

$$
Q_{B T U H} \approx \mathrm{GPM} \times \Delta \mathrm{T}
$$

Affinity Laws:
If speed is decreased by $10 \%$, Law I: Flow is Proportional to Shaft Speed.

Flow is decreased by $10 \%$
Law 2: Pressure is Proportional to the Square of Shaft Speed.

Pressure is decreased by ~18\% (1$.90^{2}$ )

Law 3: Power is Proportional to the Cube of Shaft Speed.

Power is decreased by ~27\% (1-.903)

## PIPING SYSTEM



## CHILLED WATER COILS




## DYNAMIC PRESSURE VS $\Delta T$

$$
Q_{\text {BTUH }} \approx \mathrm{GPM} \times \Delta \mathrm{T}
$$

- Increasing supply-to-return differential temperature requires less flow for same heat transferred
- Less flow in a given pipe system results in lower velocity
- Lower velocity equals lower friction and lower pressure loss
- Lower pressure and flow equals lower energy

Three Rules for Chilled Water System Optimization
Reduce Flow
Reduce Flow
Reduce Flow

## Variable Primary Only (One unit on)



Load equals 1 chiller $=1000$ gpm @ $12^{\circ} \mathrm{F} \Delta \mathrm{T}=500$ Tons

# Variable Primary Only (Two units on) 

QUESTION: Can we improve this scheme?
Control Valves close against


Chiller Chiller and flow staging accomplished by measurement of 500 Tons $\quad \Delta \mathrm{P}$ between supply and return at selected location
Load equals 1.2 chillers $=600$ Tons $=1200 \mathrm{gpm} @ 12^{\circ} \mathrm{F} \Delta \mathrm{T}$

## EFFECT OF $\triangle$ T ON PIPE CAPACITY \& COST

## CHILLED WATER PIPING CAPACITY

DIRECT BURIED PIPE
WATER SIDE TEMAPERATURERISE, TA GPMA/ION


# PIPE CAPACITY 

I00,000 GSF


125 psig system
4" pipe - \$400,000 (I00,000 GSF)
I0" pipe - \$500,000 (1,200,000 GSF)
$+25 \%$ Cost $=+1200 \%$ capacity

## QUESTIONS?



THIS CONCLUDES THE AMERICAN INSTITUTE OF ARCHITECTS CONTINUING EDUCATION SYSTEMS COURSE


AIA
Continuing
Education
Provider

