HEATING AND COOLING Production

JEFF ZUMWALT LARRY SCHUSTER

AIA Continuing Education Provider Credit(s) earned on completion of this course will be reported to American Institute of Architects (AIA) Continuing Education Session (CES) for AIA members.

Certificates of Completion for both AIA members and non-AIA members are available upon request.

This course is registered with AIA CES for continuing professional education. As such, it does not include content that may be deemed or construed to be an approval or endorsement by the AIA of any material of construction or any method or manner of handling, using, distributing, or dealing in any material or product.

Questions related to specific materials, methods, and services will be addressed at the conclusion of this presentation.

HEATING/COOLING PRODUCTION

CAMPUS HEATING/COOLING

HEATING Overview

Boilers Steam Hot Water Fuels Costs

WATER TUBE BOILER

WATER TUBE BOILER

BURNER

Low NOx Burner

BOILER TUBE

Water Quality

STACK TEMPERATURE

EXHAUST STACK

FIRE TUBE BOILER

EQUIPMENT - RISKS

BOILER EXPLOSION AT BEAVER MILLS, KEENE, N. H., MAY 22, 1893.

EQUIPMENT - RISKS

WHAT HAPPENS IF YOU DEFEAT PRESSURE SAFETIES?

BOILER REGULATIONS

Construction Repair Operation

- ASME Boiler and Pressure Vessel Code
- Air Permit
- Operator Licensing
- Insurance Companies

HEATING COSTS

	Kentucky	New Mexico
Fuel	48%	55%
Labor & Maintenance	29%	34%
Chemicals	6%	2%
Electricity	4%	5%
Water	3%	1%
Other	10%	3%

CENTRAL OR DISTRIBUTED

Distributed

CENTRAL VS. DISTRIBUTED

<u>Pros</u>

- Consolidation of operations/maintenance
- Backup fuel capability
- Can last over 50 years
- Combined Heat & Power
- Safer

<u>Cons</u>

- Requires pipe distribution
- Complex systems

<u>Pros</u>

- Lower first cost
- Less complex
- Reduced exposure to catastrophic failure

<u>Cons</u>

- Less reliable
- Less flexibility
 - Fuel
 - CHP
 - Emissions

COOLING Overview

Chillers Refrigerants Water

VAPOR COMPRESSION CYCLE

- Evaporation (or boiling)
- Pressure manipulation

https://en.wikipedia.org/wiki/List_of_refrigerants

REFRIGERANTS

Chlorofluorocarbons (CFCs)

Hydrochlorofluorocarbons (HCFCs)

Hydrofluorocarbons (HFCs)

Natural Refrigerants

RISKS WITH REFRIGERANTS

REFRIGERANT TYPE	CLASS	OZONE DEPLETION POTENTIAL	GLOBAL WARMING POTENTIAL
CFC	Synthetic	High	Very High
HCFC	Synthetic	Very Low	Very High
HFC	Synthetic	Zero	High
HC	Natural	Zero	Negligible
CO2	Natural	Zero	Negligible

WATER – IDEAL HEAT TRANSFER FLUID

CENTRIFUGAL CHILLER

• Also steam driven chillers

CENTRIFUGAL CHILLER

• 5,000 ton chiller

ABSORPTION CHILLER

ABSORPTION CHILLER

DISTRICT COOLING

DISTRICT COOLING -PROS AND CONS

- Integrated solutions
- Less equipment
- Lower service cost
- Better space utilization
- Alternate technological option
- Lower operating costs
- Better management and energy control
- Higher overall efficiency
- Multiple fuel capabilities
- Aesthetic

- High first cost
- Inflexible once constructed
- Distribution losses
- Need for specialized technicians

COOLING TOWERS

Warmer air out

UNIVERSITY OF ILLINOIS

UNIVERSITY OF ARIZONA

HIDDEN IN PARKING GARAGE

AIR COOLED COOLING TOWER

AIR HANDLERS

COOLING LOAD PROFILE

SHAVING THE PEAK WITH TES

THERMAL ENERGY STORAGE

- Benefits
 - Shifting system load demand
 - Stability of cooling capacity
 - Dual-duty operation
 - Managing energy costs
 - Reduction in demand charges

DUKE UNIVERSITY - WATER

ICE TES

- Chillers
 - Variable speed drives
 - Mechanical unloading
- Towers
 - Variable speed fans and pumps
- Distribution Pumps
 - Variable speed pumps
- Good Maintenance
- Metering / Analytics
- Thermal Energy Storage
- Free Cooling

EFFICIENT CHILLER OPERATION

QUESTIONSP

THIS CONCLUDES THE AMERICAN INSTITUTE OF ARCHITECTS CONTINUING EDUCATION SYSTEMS COURSE

AIA Continuing Education Provider