
Course Objectives

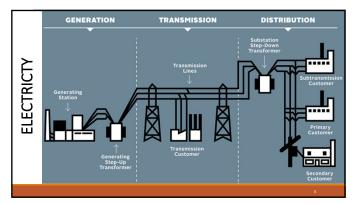
- Basic understanding of how electricity is produced and distributed
- Basic understanding of production and distribution options
- Overview of common approaches in higher education
- Class exercises APPA University

APPA Utilities

Electric Production & Distribution

2

"Everything" Needs Electricity


PHYSICAL PLANT

• Drinking water

- Chilled water
- Heating hot water
- Steam
- Building lighting and power
- Geothermal
- Sanitary sewer
- Storm sewer

4

5

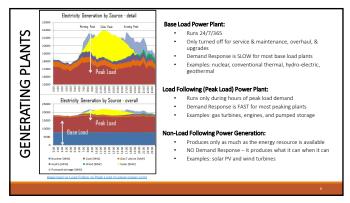
ELECTRIC PRODUCTION

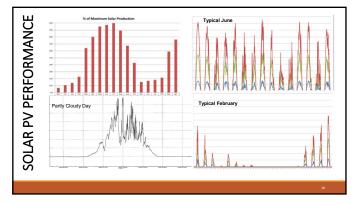
It's "simple"

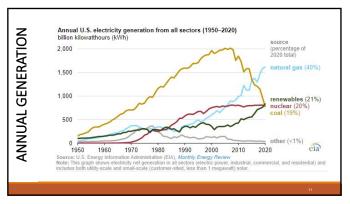
Turn copper inside a magnet*

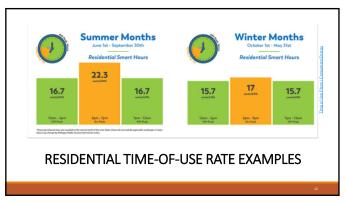
• Copper turning speed determines frequency

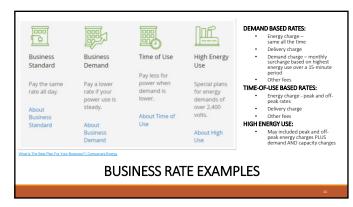
* Exceptions (fuel cell & PV solar)


How it is turned is up to you...


- Resource availability
- Economics
- Sustainability goals


Electricity = Flow of Electrons




Steam (~80% of power production) Coal, natural gas, fuel oil, bio-fuel Nuclear Combustion Turbine Natural gas Fuel oil Heat can be recovered to generate steam for use in a steam turbine Engine Natural Gas Fuel oil (diesel) Water River/dam Waves Pumped hydro Wind Natural Cooling Tower Conventional Thermal Power Plant Conventional Thermal Power Plant

ELECTRIC UTILITY RATES

Cost for power consumed (consumption)

Power is measured in Watts

1,000 Watts (W) = 1 kiloWatt (kW)

Energy Used = Power x Time

kiloWatt hours (kWh) = Power (kW) x Time (hours)

14

ELECTRIC DRYER EXAMPLE

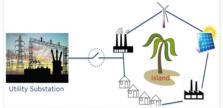
- Power consumption = 2.5 kW
- Run time = 3 hours/day
- Rate = \$0.12 per kWh

Energy Used = 2.5 kW x 3 hours = 7.5 kWh

Cost = 7.5 kWh x \$0.12/kWh = \$0.90

POWER PURCHASE OPTION

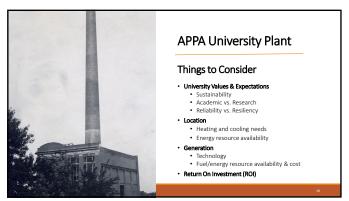
Power Purchase Agreement (PPA)


- Developer investment (DBOOM) on university property
- University purchases net power produced a fixed rate (\$/kWh) and receives Renewable Energy Credits (REC)
- Agreement durations 20 35 years (typ)
- Additional things to consider:
 - Climate
 - Parking lot usage cases
 - Production & microgrid stability risk
 - Interconnection cost and risk
 - FERC registration and "sale for resale" prohibition
 - Buy-out clauses
 - End of agreement clauses

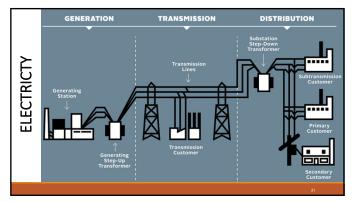
16

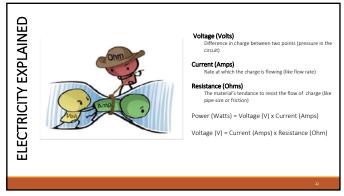
SELF-GENERATION - INCREASED RELIABILITY & RESILIENCY

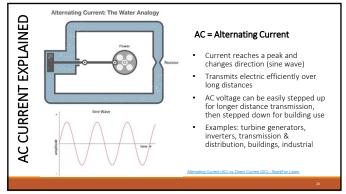
- Generation capacity vs. campus demand
- N+1 redundancy
- Black-start capability
- Ability to "island" from local utility grid

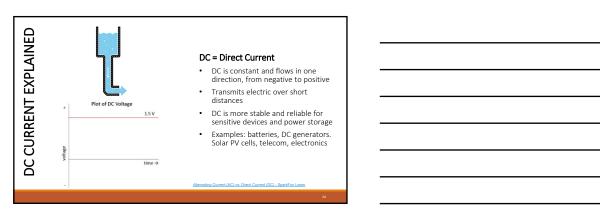

17

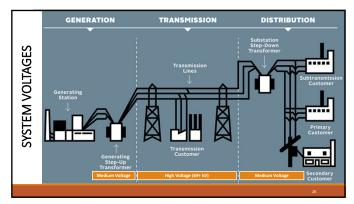

CAMPUS UTILITY RATES

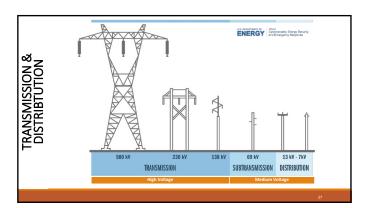

Not just one way...

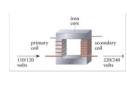

- Cost based accounting
- Enterprise model or not...
- Fees or not...
- Capital depreciation or not...
- Debt interest or not...
- Where does the distribution system stop?
- Special rates...grants may dictate...
- Rates for energy conservation projects...



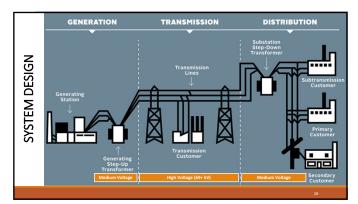




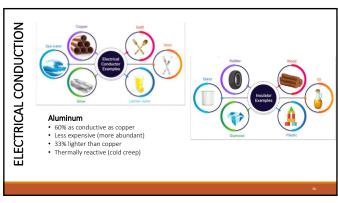


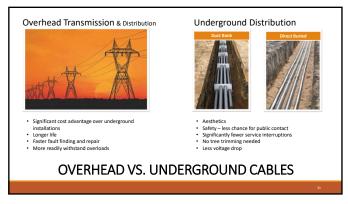

TRANSFORMERS

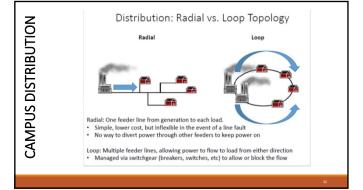
- Changes voltage and current
- Step-up Transformer increases voltage, but lowers current
- Step-down Transformer decreases voltage, but

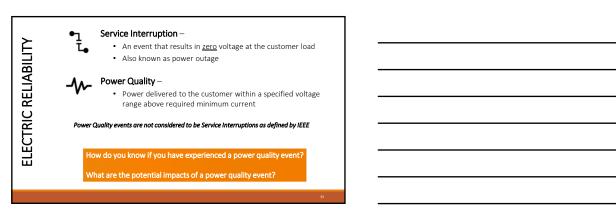

Why is this necessary?
Current produces heat (losses)

Stepping up voltage (138kV+) for long distance transmission greatly improves efficiency by minimizing heat losses and therefore cost


Voltage can then be stepped down to safe usage levels (120/240V) close to the point of use




28



29

BUILDING ELECTRICITY

Emergency generators supply power for Building Code life safety systems such as:

- Egress lighting
- Fire alarm systems
- Smoke evacuation
- Elevators
- Broadband Utility and Telephone Utility Rooms
- Communication and Fiber rooms
- Central Control system cabinets

<u>Standby generators</u> supply power for user defined needs beyond building code life safety. For example:

- Critical lab equipment such as ultra-lows/freezers
- Critical lab exhaust fans

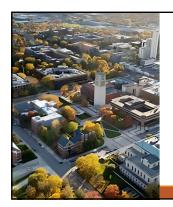
34

Outage identified

- Isolate circuits (using loop or redundancy to maintain power)
- Communicate if power lost
- Diagnose issue
- Repair and test
- Restore power
- After-action review
- Communicate / notify

35

BUILDING



APPA University Electric Distribution

Things to Consider

- University Values & Expectations
 - Reliability vs. Resiliency
 - Aesthetics
- Return On Investment (ROI)

APPA)

APPA University Electric Distribution

Things to Consider

- University Values & Expectations Reliability vs. Resiliency

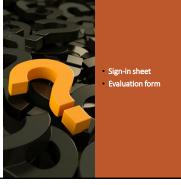
 - Aesthetics
- Return On Investment (ROI)

37

Assumptions:

CLASS EXERCISE

- Academic and research
- Self- generate
- In/adjacent to major city
- Positive ROI


10-minute discussion → report out:

- Major features of electrical distribution system design
- Reliability and resiliency design features
- Why

38

